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STABILITY CRITERION OF THREE-DIMENSIONAL PERTURBATIONS ON CONCAVE 

ELASTIC SURFACES 

N. F. Yurchenko and V. V. Babenko UDC 532.526 

Stability criteria are determined experimentally for the boundary layer on concave 
elastic surfaces in the preturbulent transition region. 

As always, the investigation of the physical processes of turhulent boundary-layer 
formation remains urgent for a broad class of scientific and practical problems. The structure 
of the perturbing motion in different stages of laminary boundary-layer transition into tur- 
bulent and the process of transformation of plane into three-dimensional perturbations are 
studied experimentally in [i], in longitudinal vortices of the Benny--Lin type on a fiat plate, 
and in Goertler vortices on a curvilinear plate. The general features and regularities of 
formation and existence of these vortical systems are determined and the Goertler neutral 
curve is first constructed by experimental means. 

The possibility of controlling the hydrodynamic stability by using different elastic 
plates is studied in [2], and three-dimensional perturbations on a rigid plate in [3]. 

The purpose of the present paper is to investigate the influence of an elastic surface 
on the stability of longitudinal vortices and to determine the possibility of controlling 
three-dimensional perturbations, particularly, for heat- and mass-transfer problems. 

The methodology of the experiment is based on the susceptibility of the boundary layer 
to different perturbations [i, 4, 5]. According to these representations, under ideal flow 
conditions prerequisites exist for the generation of perturbations in the form of Tollmien-- 
Schlichting waves with their subsequent transformation into more complex types. Factors de- 
grading the hydrodynamic stability (for instance, the high degree of main flow turbulence, 
streamlined surface roughness, etc.) result in magnification of the perturbing motions. The 
greater the intensity and quantity of the degrading factors, the more rapidly donatural 
boundary layer perturbations develop. The susceptibility problem consists of studying the 
nature of the interaction at different stages of boundary layer transitionbetween existing 
natural perturbations and those induced from outside. 

OrL the basis of this definition the linear and Goertler instabilities are particular 
cases of the Susceptibility problem whose investigation must be conducted under the greatest 
possible ideal fluid flow conditions and the induction of small perturbations. On the one 
hand, by this the influence of uncontrollable factors and nonlinear interaction of the induced 
a~d natural perturbations on stability is eliminated, and on the other, the possibility is 
achieved of determining the boundary-layer reaction to perturbations of a given scale. The 
induced small plane perturbation s magnify and interact with the natural perturbations inthe 
linear stability investigation. Small three-dimensional perturbations, which excite the 
existing plane natural perturbations and result in their rapid transformation into three- 
dimensional perturbations that imteract with the induced perturbations are introduced into the 
boundary layer in the study of the Goertler instability. 
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The experiment was conducted on a hydrodynamic test stand with a regulatable turbulence level 
s ~ (0.05-10)% [i, 2]. The boundary layer was investigated on the bottom of the working 
section which was in the form of four variants: flat along the whole length of 3 m, and with 
a concave part of curvature I/R = i, 0.25, and 0.08 m -1, where R is the radius of curvature. 

In all cases the distance between the leading edge and the beginning of the curvature 
was 0.5 m and the maximal deflection was 0.05 m. The nonuniformity in the velocity distri- 
bution along the working section axis reached 20%. A transparent curvilinear cover was 
fabricated that duplicated the configuration of the bottom with I/R = i m -~. Installation of 
the cover above this bottom permitted flow realization in a cylindrical channel. Therefore, 
the regularities of vortex perturbation development could be investigated in both a classical 
formulation (in the channel), and under complicating conditions (without the cover): raising 
the degree of turbulence and the variable longitudinal pressure gradient. 

As in [6], the longitudinal vortex perturbations were introduced by using vortex gener- 
ators installed in the transversal direction (z) on the streamlined surface. The vortex 
generator is a vertical plate 5.10 -5 m thick with a bifurcated and slightly cambered endface 
such that vane surfaces to twist the flow were on both sides of the plate. This resulted in 
the formation of pairs of longitudinal vortices between adjacent vortex generators: the slow 
flow domain ("peak" z = 0) was formed in the xz plane in the wake behind the vortex generator, 
and the accelerated flow domain ('~alley", z = %z/2). The distance %z between vortex gener- 
ators corresponded to the wavelength of the three-dimensional perturbations and varied be- 
tween 0.004-0.032m limits with a 0.002-m step. Four kinds of vortex generators of similar 
shape, fabricated by one die, were utilized. They differed in length and height: the vortex 
generators B1 were 0.003 m high and 0.012 m long, B2 were, respectively 0.005 and 0.015 m, 
B3 were 0.007 and 0.018 m, B4 were 0.015 and 0.018 m. 

The perturbation development was observed by using flow visualization hy a tellurium 
method during boundary-layer parameter checking by a laser anemometer [1-6]. The regular- 
ities of three-dimensional perturbations in the form of longitudinal vortices were investi- 
gated by placing cascades of vortex generators at different places along the x axis of the 
working section and downstream at a distance of x_ = 5"10 -2 m from them by a hot wire to 
photograph the visualized velocity profile in the transversal direction. Vortex generators 
were inserted in the boundary layer at x = const, their size and the wavelength %z were 
varied by changing the distance between them as well as the quantity U~. The profile U(z) 
was photographed at different distances y from the wall. To refine the details at character- 
istic places in z, the streamlines and U(y) profiles which were also checked by using the 
laser anemometer, were photographed. 

By measuring the parameters and regularities of vortex system development along x for 
U~, R and Xz = constant, we determine the displacement of the control point on the Goertler 
stability graph along the line P--U~l~'5~-lR-~ (P is the wave parameter, and ~ is the 
kinematic viscosity coefficient). By alternately varying the values of R, Ue and ~z, we pass 
along different lines P = const. The right branch of the Goertler neutral curve and the 
domain of maximal amplifications of the vortex systems were here determined. The inter- 
section of the neutral curve is characterized by the formation of the most stable waveform 
profile U(z) in space and time. 

If Xz changes for R, U~ and x = const, then the control point on the graph of the 
Goertler curve advanced along the line G-=--U~6~.bv -I XR~.5~const, where G is the Goertler 
parameter and 62 is the thickness of the loss of momentum. Varying the values of R and U~ 
alternately, we pass along different lines G. Therefore, it is possible to determine a lower 
minimal value of G and the left branch of the neutral curve. 

Finally, by comparing the results of measurements for %z, U~ and x = const for different 
R, we move the control point along the lines ~z62 = const, where ~z = 2~/~z is the wave 
number. 

For the same x and U~ the U(z) profiles were initially investigated for the natural 
transition. In addition to these, the measurements on the rigid curvilinear plates were 
controls for the studied longitudinal vortex systems [I]. These plates were then glued to a 
monolithic elastic material of thickness 0.003 m and density 120 kg/m 3. The mechanical 
properties of the elastomer were characterized hy the instantaneous elastic modulus E = 5"10 s 
N/m 2 and the loss angle tangent tan ~ = 0.62. 

Graphical copies of the photographs of the flow field along the curvilinear elastic 
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Fig. i. Boundary-layer reaction of an elastic surface to 
perturbations of different scale: R = 4 m, U~ = 0.033 m/sec, 
x = 2.2 m; x_ = 0.05 m; Yt.w. = 0.006 m; without induction 
of perturbation on the rigid (a) and elastic (b) surfaces; 
c -- h with the induction of~perturbation for %z=0,01M (8); 
0.012 m (d); 0.014 m (e); 0.016 m (f); 0.02 m (g); 0.028 m 
(h): i) tellurium wine; 2)tellurium cloud; 3) longitudinal 
and 4) transverse markers on the bottom of the working sec- 
tion: 5) vortex generators; spacing 0.5 m between transverse, 
and 0.i m between longitudinal markers. 

surface visualized in the xz plane are represented in Fig. I. The flow field (the location 
of the tellurium wire i) was recorded at a distance from the streamlined surface that was 
approximately equal to the displacement thickness 61(Yt.w.~ 0,006 m) Tellurium clouds were 
emitted automatically during the supply of electrical pulses to the wire at regulated time 
intervals (0.5 sec). During propagation downstream the linear cloud was initially deformed 
in conformity with the velocity field in the boundary layer, i.e., acquired the form of the 
U(z) profile. The decimeter markers 3 and 4 superposed on the surface along the channel axis 
permitted computation of the propagation velocity and the perturbation growth along x as a 
function of the coordinate z. The different shape of the tellurium clouds emitted as 
successive times characterized the nonstationarity of the flow field above the concave 
elastic surface. As compared with the rigid standar, the natural perturbations on the 
elastic surface differed by their larger scale and lower rates of growth downstream. 

Installation of the cascade of vortex generators 5 (Fig. it-h) modified the flow pattern 
substantially. For a small value of %z (c) the imposition of a fine-scaled induced structure 
on the large-scale is natural. In contrast to the concave rigid surface, such an effect here 
appeared downstream from the vortex generator cascade (compare with [i]). Superposition of 
the induced and natural perturbations was detected in the flow around the plane rigid plate 
when perturbations of lower intensity were introduced. The effect described shows that the 
growth rate for the natural perturbations is greater than for those induced with a low value 
of %z: modulation of the natural wave was observed prior to the start of "longitudinal braid 
formation, with stimulated kz. Therefore, organization of the given flow structure in the 
boundary layer of curved monolithic elastic surfaces requires the insertion of sufficiently 
intensive perturbations on the one hand, and on the other, such a structure is formed at 
a great distance downstream from the site of occurrence. In other words, the boundary layer 
on elastic surfaces is a more inertial system than on rigid surfaces. The data obtained are 
in good agreement with the deductions of [5], according to which & more intensive formation 
of Benny--Lin vortices occurred as compared with the rigid etalon in a natural transition to 
elastic horizontal uniform plates, as did their slow development downstream, while the inter- 
action, with the imposed field of three-dimensional perturbations depended on. the scale relation- 
ships between the natural and induced perturbations and contributed to protracting the 
transition. 

The smoothing, damping nature of the influence of the elastic-surfaces on the development 
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TABLE i. Perturbed Boundary-Layer Parameters in a Cylindri- 
cal Section 

IYl U , 6 . 1 0  a, 6 F I O  a,  ~ , , . I0  "~ x _ . l O  2, 6 : . I 0  a, < O ~ X  ( 6 ~ ) •  x, 
mTsec m m ~ m ~ m • x lr~ " a %6.: 

0,85 
0,9 
0,85 
0,85 
0,9 

0,107 
0,2 
0,106 
O, 105 
0,055 

15 
13 
15 
15 
20 

1,9 
1,67 
1,9 
1,9 
4 43 

2,8 
2,4 5 

i5 
2O 
2O 

3 
2,45 
2,9 
2,2 
5,1 

1,67 
1,94 
1,71 
1,5 
2,78 

7,2 
!8,8 
7,5 

86 , 1 

0,52 
0,61 
0,52 
O, 34 
0,72 

of processes in the boundary layer made difficult finding clear boundaries of the three- 
dimensional perturbation growth and damping domains. In this case the principle of boundary 
layer selectivity reaction with respect to the scale %z of the induced perturbations is not 
manifest so clearly and does not afford a possibility of determining the neutral pertur- 
bations uniquely as occurred for the rigid surface [I]. From an analysis of the data (Fig. id- 
g) it follows from the criteria taken for the stiff wall the structures with X z = 0.012-0.02 m 
might equally be such perturbations. Computation of the parameters to construct the stability 
diagram yields the following quantities here: G = 2.1 ~z~2 = 0.5-0.84. The induced pertur- 
bations with %z = 0.028 m that are being magnified (Fig. lh) are characterized by the param- 
eters G = 2.1 and az62 = 0.36 and the natural perturbations with X z = 0.05 m by the qhantities 
G = 2.1 and ~z62 = 0.2. Let us note that the natural perturbations are stabilized best by 
those imposed with Xz = 0o012 (Fig. id). 

The cycle of investigations on the same elastic surface in a cylindrical section yielded 
several points of the stability diagram. Results of not only the U(z) profile visualization 
but also measurements of the U(y) profile by the laser anemometer were utilized. Only 
those U(y) profiles were analyzed for three coordinates z (at the "peaks," "valleys," and 
intermediate positions) which had the characteristic form for the developed longitudinal vor- 
tex system (respectively with an inflection point at the wall, filled without points of in- 
flection, and an abrupt inflection in the neighborhood y ~ 61 [6]). The parameters G and 
~z62, obtained for such conditions can, as the last pair for the concave wall, be referred to 
the maximal magnification domain on the stability diagram. Presented in the table are kine- 
matic boundary layer characteristics in the cylindrical section in the presence of such 
perturbations. The pairs of parameters obtained are superposed in the form of points on the 
Goertler stability diagram network (Fig. 2). Despite the fact that no clear boundary is 
determined between the damping and growing perturbations (neutral curve), it can be asserted 
that a smaller perturbation range is enclosed by the instability domain here than in the case 
of a rigid surface. 

Another important result is the increase in the first and second critical Goertier num- 
bers. The first critical Goertler number Go is the minimal value of the quantity G for 
which the neutral development of longitudinal vortices is fixed; it characterizes the begin- 
ning of the formation of ordered longitudinal vortex systems in the boundary layer and is 
determined by the minimal extremal point of the Goertler neutral curve. Results of investi- 
gating the linear boundary layer stability [i, 2] indicate an increase in Go for elastic 
plates as compared with a rigid plate for which Go = 0.3-0.5 [i]. According to the data in 
Pig. 2, for elastic plates Go increased 2-3 times. 

The second critical Goertler number characterizes destruction of the ordered vortex 
systems and transition to turbulence. Depending on the flow conditions, G, = 2-8 and 1-1.5 
are obtained in [8, 9], respectively, for a rigid plate, and oscillations of the longitudinal 
vortices in z (meandering) for G = 6-7 are fixed in [8]. The quantities G, = 18.8 are ob- 
tained in the present measurements for the artificial generation of vortex perturbations 
above an elastic surface for an open channel with a concave section and G* = 80 for a cylin- 
drical channel. For the rigid concave wall G, = 6.3 [I], i.e., is 3-12 times less than for 
an elastic surface are also taken into account, then evidently the nonlinear transition 
domain is here increased. 

Therefore, as for the flow around a flat plate [i, 5], the results obtained showed that 
the curvilinear elastic surface also effectively stabilizes three-dimensional perturbations, 
the extent of the stable longitudinal vortex systems increases substan~ially here as compared 
with the rigid plate. The longitudinal vortex systems on a rigid plate were controlled in 
[3] by using distributed vortex generators which were heated to increase the efficiency. 
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Fig. 2. Stability of three- 
dimensional perturbations on 
a concave elastic surface: I, 
II) experimental neutral curve 
and maximal magnification curve 
for a rigid surface [i]; III, IV) 
computed neutral curves [7]; V, 
Vl) domains of neutral and maxi- 
mally growing perturbations for 
an elastic surface; character- 
istics of a concave elastic 
surface: i) natural pertur- 
bations; 2) growing forced; 3) 
almost neutral forces; 4) growing 
forced in a cylindrical channel. 

The present tests show that either uniform elastic surfaces or those ordered in the transver- 
sal direction [i0] can be used here successfully for these purposes since the property of 
such plates to organize and stabilize the longitudinal vortex system was detected here. 

It is known that the heat and mass transfer processes are intensified in vortical motion. 
As is shown [i], longitudinal vortex systems are characterized simultaneously hy minimal 
friction drag coefficient. Then application of elastic ordered surfaces permits increasing 
the intensity of the heat and mass transfer in the near-wall domain with a simultaneous stable 
reduction in the friction coefficient. Conservation of the fundamental modeling principles 
is required here. On the basis of making the coefficients of the differential equations of 
elastic surface motion dimensionless in the form of the Voight--Kelvin model [2, i0], dimen- 
sionless parameters characterizing the properties of the elasti~ materials utilized were 
compiled and computed. The inertial properties were determined by the coefficient of fluc- 
tuating mass M=pl/p~bM*=pl/p~h where 61 and ~ are the boundary layer displacement thick- 
nesses for its:natural development and for the introduction of controlled perturbations. The 
elastic and damping properties were characterized by the Cauchy C and damping D parameters: 

C = poUL/2E,  D = kpoUL/2-V '~ , )2 .  

Here k is proportional to the energy being absorbed by the layer of elastic material(k=l-- 
exp[--~tg~]) For the material used in the present experiments the magnitudes of the sim- 
ilarity criteria had the values M = 0.2, M* = 0.16; C = 1.25.10 -4 and D = 98.8. For other 
materials tested these quantities varied between the limits M = 0.09-~.89, M*= 0.16-0.54, 
C = (0.4-2.4)'10 -4 , and D = 72,9-98.8. It was also determined tha~ imtensification of the 
heat and mass transfer processes for the generation of vortex systemin the boundary layer can 
be achieved on a plate being characterized by the set of parameters M = 0.7, M* = 0.66, C = 
0.5.10 -~, and D = 73.3. Geometric similarity in the transverse regularity step Xz of the 
induced longitudinal vortex system should here also be taken into account and inthe case of 
an elastic surface with an ordered outer layer in the transversal direction, the step in this 
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ordering as well. To produce and maintain longitudinal vortes structures contributing to the 
best mixing of a medium near a streamlined surface, the selection of the step in I z should be 
performed on the basis of a conversion of the perturbation parameters incident in the neutral 
stability domain (Fig. 2). In this case the blurred nature of this domain (in contrast to 
the localized curve for a rigid surface) plays an affirmative part by giving a certain range of 
acceptable values of I z. In its turn, this increases the possibility of selecting the per- 
turbation scale needed without damping and without resulting in rapid turbulization of the 
boundary layer. 

NOTATION 

x, y, z, coordinate axes governing the flow field and directed, respectively, along the 
main flow, perpendicular to the wall, and across the flow; R, surface radius of curvature; 
U~, unperterbed flow velocity; Re, Reynolds number defined with respect to the length; P, 
Goertler wave parameter; Go and G,, respectively, the first and second critical Goertler num- 
bers; p', magnitude of the pressure fluctuations in the boundary layer; M, C, D, parameters 
characterizing the inertial, elastic, and damping properties, respectively, of the mater- 
ials; l, the thickness of the elastic material layer; E, elastic modulus; k, damping factor; 
tan ~, loss angle tangent; p and P0, magnitudes of the streamlining medium and the elastic 
material; 6~, boundary-layer displacement thickness; 62, loss of momentum thickness; az = 
2~/Iz and Xz, wave number and wavelength of the three-dimensional perturbations along z; c, 
degree of turbulence; x_, distance between the vortex generator and the tellurium wire; and 
~, kinematic viscosity coefficient. 
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